Kort om
Updated info: https://www.nichele.eu/
Fagområder
Vitenskapsdisipliner
Forskningsgrupper
Forskningsprosjekter
Aktive forskningsprosjekter
-
AI-Mind
Prosjektet har som mål å redusere utfordringene ved demens med å utvikle nye diagnostiserende verktøy og forbedre effektiviteten i helsesystemet.
Avsluttede forskningsprosjekter
-
FeLT- Futures of Living Technologies
FeLT er motivert av relasjoner og interaksjon mellom mennesker, levende organismer og maskiner.
-
Hybrid Deep Learning Cellular Automata Reservoir (DeepCA)
Et langsiktig prosjekt som søker å integrere biologisk og kunstig intelligens.
-
Self-Organizing Computational substRATES (SOCRATES)
Et langsiktig prosjekt med mål om å gjøre effektive og kraftige dataanalyser tilgjengelig overalt, fra den enkleste sensornoden til den mest komplekse superdatamaskinen.
Publikasjoner og forskningsresultater
Vitenskapelige publikasjoner
Valderhaug, Vibeke Devold; Ramstad, Ola Huse; van de Wijdeven, Rosanne Francisca;
Heiney, Kristine
;
Nichele, Stefano
; Sandvig, Axel; Sandvig, Ioanna
(2024).
Micro-and mesoscale aspects of neurodegeneration in engineered human neural networks carrying the LRRK2 G2019S mutation.
Frontiers in Cellular Neuroscience.
Vol. 18.
https://doi.org/10.3389/fncel.2024.1366098
Lindell, Trym
; Huse Ramstad, Ola; Sandvig, Ioanna; Sandvig, Axel;
Nichele, Stefano
(2024).
Chaotic Time Series Prediction in Biological Neural Network Reservoirs on Microelectrode Arrays.
Hirose, Akira; Ishibuchi, Hisao (Red.).
2024 International Joint Conference on Neural Networks (IJCNN). s. 1-10.
IEEE conference proceedings.
https://doi.org/10.1109/IJCNN60899.2024.10650567
Pietropolli, Gloria;
Nichele, Stefano
; Medvet, Eric
(2024).
The Role of the Substrate in CA-based Evolutionary Algorithms.
Li, Xiandong; Handl, Julia (Red.).
GECCO '24: Proceedings of the Genetic and Evolutionary Computation Conference. s. 768-777.
Association for Computing Machinery (ACM).
https://doi.org/https://doi.org/10.1145/3638529.36
Jain, Sanyam;
Nichele, Stefano
(2024).
Frequency-Histogram Coarse Graining in Elementary and 2-Dimensional Cellular Automata.
Nordic Machine Intelligence (NMI).
Vol. 3.
https://doi.org/10.5617/nmi.10458
Jain, Sanyam; Shrestha, Aarati;
Nichele, Stefano
(2024).
Capturing Emerging Complexity in Lenia.
Villani, Marco; Cagnoni, Stefano; Serra, Roberto (Red.).
Artificial Life and Evolutionary Computation. WIVACE 2023.. s. 41-53.
Springer.
https://doi.org/https://doi.org/10.1007/978-3-031-
Farner, Jørgen Jensen; Huse Ramstad, Ola;
Nichele, Stefano
;
Heiney, Kristine
(2024).
Local Delay Plasticity Supports Generalized Learning in Spiking Neural Networks.
Villani, Marco; Cagnoni, Stefano; Serra, Roberto (Red.).
Artificial Life and Evolutionary Computation. WIVACE 2023.. s. 241-255.
Springer.
https://doi.org/https://doi.org/10.1007/978-3-031-
Bhandari, Shailendra
;
Nichele, Stefano
;
Denysov, Sergiy
;
Lind, Pedro
(2024).
How quantum and evolutionary algorithms can help each other: two examples.
arXiv.
https://doi.org/10.48550/arXiv.2408.00448
Glover, Tom Eivind
; Jahren, Ruben; Francesco, Martinuzzi;
Lind, Pedro
;
Nichele, Stefano
(2024).
A sensitivity analysis of cellular automata and heterogeneous topology networks: partially-local cellular automata and homogeneous homogeneous random boolean networks.
International Journal of Parallel, Emergent and Distributed Systems.
https://doi.org/10.1080/17445760.2024.2396334
Glover, Tom Eivind
;
Lind, Pedro
;
Yazidi, Anis
; Osipov, Evgeny;
Nichele, Stefano
(2023).
Investigating Rules and Parameters of Reservoir Computing with Elementary Cellular Automata, with a Criticism of Rule 90 and the Five-Bit Memory Benchmark.
42 s.
Complex Systems.
Vol. 32.
https://doi.org/10.25088/ComplexSystems.32.3.309
Lindell, Trym
; Hudcová, Barbora;
Nichele, Stefano
(2023).
Canonical Computations in Cellular Automata and Their Application for Reservoir Computing.
9 s.
ALIFE : Proceedings of the Artificial Life Conference.
Vol. 16.
https://doi.org/10.1162/isal_a_00594